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Abstract—Exercise intensity monitoring of physical activities
has drawn increasingly attention as the awareness of the exercise
intensity is of great importance for a person to achieve optimal
training outcomes. For example, over-training could lead to
excessive fatigue and loss of motivation for exercise. Traditional
exercise intensity monitoring systems utilize GPS data to track
the user’s intensity of cardio activities through his/her position
and speed. Such systems however become invalid for indoor
exercises on stationary fitness equipments such as the treadmill or
exercise bike. Recent work in using body-worn sensors to track
the user’s heart rate for exercise intensity monitoring usually
involves additional wearable sensors which are only available
on some particular fitness equipments, and thus are hard to be
used in all occasions. This work presents an exercise intensity
monitoring system which is capable of detecting a person’s
exercise intensity via smartphones. Our system exploits the off-
the-shelf smartphone and its headphone to capture the user’s
breathing sound. Given the captured acoustic data, our system
performs data pre-processing to remove the environmental noise
and identify the non-silent acoustic frames based on the signal
energy. Our system then conducts breathing event detection for
non-silent frames, and further calibrates the detection results by
utilizing the high correlation between breathing cycles to improve
the detection accuracy. Moreover, our system can estimate the
person’s exercise intensity based on features extracted from
the frames which contain breathing sound. Our experiments
involving 9 subjects over four-month time period demonstrate
that our proposed exercise intensity monitoring system is robust
and accurate in both indoor and outdoor environments.

I. INTRODUCTION

Due to the accelerated pace of life and growing work pres-

sure, people are paying more attention to their physical health

and actively participating in daily aerobic exercise, such as

running, jogging, cycling and dancing [1]. Recent studies show

that regular exercise participation can improve the function of

the cardiovascular system, increase the muscle strength, help

with weight loss and reduce the risk of chronic disease such as

diabetes, depression and obesity [2]–[4]. However, improper

exercise intensity may damage the health and even result in

unnecessary injuries or death in some specific cases [5]. In

addition, over-training can also lead to excessive fatigue and

loss of motivation for exercise [6]. Thus, the awareness of the

exercise intensity is of great importance to achieve optimal

training outcomes [7]. In this work, we seek to accurately

measure the aerobic exercise intensity to provide users with

reliable fitness guidance and feedback.

However, monitoring the exercise intensity is not trival. The

main challenge lies in solutions providing accurate exercise

intensity estimation across different exercise scenarios without

requiring dedicated devices. Global Positioning System (GPS)

sensor data collected from smart devices is effective to infer

the intensity of cardio activities such as running or cycling

through the position and speed information [8]. However, it

is hard to be applied to measuring the intensity of activities

with indoor stationary fitness equipments such as the treadmill,

exercise bike or elliptical machine. In addition, the exercise

intensity is a subjective measure of how hard physical activity

feels to people while they are doing it, and such perceived

level of exertion may be different among people even though

they are doing the same exercise [9]. Thus, it is also relatively

difficult to measure exercise intensity accurately for different

users by merely using the position and speed information.

Some recent techniques measure exercise intensity based on

heart rate [10], but they usually involve additional sensors

(e.g., chest-worn sensors) which are not always available

across different scenarios. Along this direction, some com-

mercial wrist-worn products such as Apple watch [11] or

Garmin watch [12] have been designed to monitor the user’s

exercise intensity through heart rate using their embedded

Photoplethysmography (PPG) sensors. However, it is not an

easy task to accurately measure heart rate with such wrist-worn

products during exercise [13]. Furthermore, a time delay (e.g.,

dozens of seconds) also exists between the heart rate changes

and the actual exercise intensity changes [14], and it makes

such system unable to provide real-time feedbacks to users.

To overcome the aforementioned weakness of existing so-

lutions, we propose an accurate exercise intensity monitoring

system without the involvement of dedicated sensors. Stud-

ies [15], [16] also show that the breathing sounds, charac-

terized by breathing volume and rate, are correlated with the

exercise intensity in real time. Our system thus captures the

breathing sound induced by the air flow for exercise intensity

estimation via the off-the-shelf smartphone and its headphone.

To the best of knowledge, our work is the first that utilizes

breathing sound to measure the exercise intensity by exploiting
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the smartphone. But there are several challenges that need

to be addressed: First, due to the fact that the breathing

sound is intermittent, the collected acoustic signal usually

contains many silent segments. Our proposed system should be

able to identify non-silent segments from the acoustic signal

accurately. Second, the breathing sound is usually relatively

weak and is also susceptible to environmental interferences,

such as the music in the gym, the running footsteps, the sound

of wind or the traffic. Such environmental noises are mixed

together with the breathing sound and may pose significant

difficulty in identifying the breathing sound accurately from

the recording. Third, the breathing pattern varies significantly

among users in terms of frequency range and loudness, so it

requires the exercise intensity detection method to be adaptive

to different users.

Our system consists of four components to address the

above challenges for accurate exercise intensity monitoring:

Acoustic Data Pre-processing, Breathing Sound Detection,

Exercise Intensity Estimation and User Profile Construction.

Given the recorded sound signals, we first perform Acoustic

Data Pre-processing to remove the environmental noise and

identify non-silent frames. In Breathing Sound Detection, we

extract acoustic features from each frame to detect possible

breathing events embedded in the recorded sound signal.

A detection result calibration technique is then applied to

further improve the accuracy of breathing sound detection by

leveraging the breathing cycle correlation inherent in a user’s

acoustic signal. Our Exercise Intensity Estimation component

further calculates the statistical features from the identified

breathing frames to perform the exercise intensity estimation

for the user. In the meanwhile, during User Profile Construc-

tion, both acoustic and statistical features are extracted from

pre-collected training breathing sound to construct the user’s

breathing profile and exercise intensity profile for breathing

event detection and exercise intensity estimation, respectively.

We summarize our main contributions as follows:

• We design an exercise intensity monitoring system lever-

aging the smartphone and its headphones to capture the

breathing sound of users.

• We develop a robust breathing sound detection scheme by

exploiting the inherent correlation relationship between

the user’s breathing cycles.

• We show that our approach has the capability to achieve

unobtrusive exercise intensity monitoring for different

users by using the detected breathing sound.

• We evaluate our system with 9 subjects over four-month

time period in both indoor and outdoor environments. The

results show that our system is highly accurate and robust

under various scenarios.

II. RELATED WORK

There have been active studies on physical exercise mon-

itoring leveraging various devices. Accelerometers can be

attached on the user’s body [17] or workout glove [18] to

recognize the characteristics of exercises and count how many

repetitions he/she has done so far. In addition, the passive

RFID tags [19] can also be attached on dumbbells to recognize

the free-weight workout in the gym. However, some dedicated

hardware is required by these techniques. Along this direction,

some commercial products such as Gym watch [20] have been

designed for fitness monitoring. However, it still requires users

to wear some additional sensors during exercise. Furthermore,

all the systems/products mentioned above mainly focus on

recognizing the type of exercise being performed or counting

the number of exercise repetitions, and do not have the

capability to perform exercise intensity monitoring.

Furthermore, there is also some work dedicated for exercise

intensity monitoring. The smart devices may use the Global

Positioning System (GPS) sensor data to track the user’s

intensity of cardio activities such as running or cycling through

his/her position and speed [8]. However, this scheme could

only infer the user’s overall exercise intensity through analyz-

ing the statistical information of the GPS data, and cannot

provide real-time feedback to the user. In addition, it also

becomes invalid for indoor exercises on fitness equipments

such as the treadmill, exercise bike or elliptical machine. The

heart rate based exercise intensity monitoring method has

also been proposed [10]. The basic idea of this technique

is that there exists a relationship between the user’s exercise

intensity and his/her heart rate, and it usually involves either

chest worn sensors or commercial wrist-worn products (e.g.,

Apple watch [11] or Garmin watch [12]). However, body-

worn sensors are usually limited to fitness usages while wrist-

worn products do not have the capability to perform accurate

heart rate monitoring during exercise [13]. Furthermore, there

usually exists a time delay which is usually longer than dozens

of seconds [14], between the heart rate changes and the

actual exercise intensity changes, making the system unable

to provide real-time feedbacks to the user.

Our work focuses on the aspect of providing accurate exer-

cise intensity estimation via monitoring the user’s breathing.

Several work has been proposed for breathing monitoring.

The capnometer system [21] measures the carbon dioxide

concentration in exhaled air using a gas analyzer. However, the

cost of such system is relatively high, making it unaffordable

for most users. Some recent studies show that the wireless

signal can be utilized for breathing rate detection [22], [23].

In particular, these approaches leverage dedicated wireless

devices (e.g., Doppler radar-based sensors or WiFi devices)

to capture small changes of the received signals caused

by the user’s breathing behavior. However, they are usually

vulnerable to ambient interference or environment changes.

Furthermore, they can only monitor the user’s breathing rate

when he/she is at rest (i.e., sitting or sleeping), and are not

suitable for exercise scenarios. Hao et al. [24] propose to use

the smartphone and its earphone to detect users’ breathing

sound, and further involves the smartphone accelerometer to

assist the breathing rate detection. However, this method does

not have the capability of exercise intensity monitoring.

Unlike the aforementioned work, we aim to perform exer-

cise intensity monitoring by leveraging the user’s breathing

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2021 at 19:51:18 UTC from IEEE Xplore.  Restrictions apply. 



(a) Low intensity (b) High intensity

Fig. 1. Spectrograms of breathing sound under different exercise intensities
for a specific user.

sound captured by the headphone, which is readily available

with almost all the smartphones. Our proposed system does

not need the active participation of users and is also easy to

use without requiring any dedicated sensors or professional

installations.

III. FRAMEWORK OVERVIEW

In this section, we discuss the preliminaries, system require-

ments and overview of our system design.

A. Preliminaries

In this work, to monitor the exercise intensity, we ex-

ploit the user’s breathing sound captured by the off-the-shelf

headphone. The benefit of using breathing sound is two-

fold: (1) Universality: It is essential to have breath during

exercise and the breathing sound is also correlated with the

real-time exercise intensity of the user [15], [16]. It is thus

feasible to provide an accurate and universal solution for

exercise intensity monitoring under various scenarios. (2) Low

cost and easy-to-use: we only rely on the microphone of

the headphone to capture the breathing sound and facilitate

intensity estimation without involving specialized hardware

such as chest strap or wrist band. Thus, motivated by these

aforementioned benefits, utilizing the characteristics within

the breathing sound provides great opportunity for exercise

intensity monitoring.

To validate the feasibility of exercise estimation leveraging

breathing sound, Figure 1 presents an example showing the

spectrograms of the breathing sound collected from a user

under different exercise intensities. We can observe that the

spectrograms of breathing sounds are significantly different

between low and high exercise intensities. Specifically, the

energy of the breathing sound under low exercise intensity lies

mostly in the low frequency range (i.e., less than 3000 Hz).

Whereas for high exercise intensity, most of the energy exists

in the higher frequency range. In addition, when comparing

with the low exercise intensity, we also find that more energy

concentrates in the breathing phase when the user is in the high

exercise intensity. These observations strongly suggest that we

could perform exercise intensity monitoring by leveraging the

user’s breathing sound.
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Fig. 2. System flow of the exercise intensity monitoring.

B. System Requirements

Our system aims to achieve noninvasive exercise intensity

monitoring using smartphone and its headphone. Specifically,

our system is designed to meet the following requirements:

Supporting Accurate Exercise Intensity Monitoring. Our

system should be able to extract unique characteristics from

a user’s breathing sound for accurate exercise intensity moni-

toring. It could offer an important indicator for most aerobic

training workouts to achieve the optimal training outcomes.

Easy to Use. Our system should be low cost and easy-to-

use. Specifically, it should re-use existing devices in our daily

life without dedicated sensors attached to the user’s body since

such sensors may affect the user’s normal body movements

during the exercise.

Robust Across Different Environments. As the back-

ground noises including the music in the gym, the sound of

wind or the traffic outside are unavoidable during exercise, our

system should be able to capture the weak breathing sound and

provide accurate exercise intensity monitoring by mitigating

the impact of noise.

Low Detection Latency. Our system should be able to

estimate the user’s exercise intensity with small number of

acoustic measurements. In this way, the system can process

the data on the fly and provide fast feedback to the user.

C. System Overview

The basic idea of our system is to utilize smartphone

headphone to capture the breathing sound for exercise intensity

monitoring. The smartphone headphone is used extensively

during exercise. It is reported that over 60 percent of American

runners use their headphone and smartphone to listen to music

while running [25]. Furthermore, many people also tend to use

headphone to watch videos, listen to news, or operate other

apps from smart devices when they do aerobic exercises. It
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is thus possible for us to explore utilizing the smartphone’s

headphone to capture the breathing sound for exercise intensity

monitoring.

As illustrated in Figure 2, the system takes as input the

acoustic data captured by the smartphone’s headphone. In the

acoustic data pre-processing phase, the acoustic data is first

processed to remove the environmental noise using a band-

pass filter and further divided into frames. An energy based

technique is then adopted to accurately capture the non-silent

frames from the acoustic signal. The next two components

of our system are the breathing sound detection and exercise

intensity estimation. Given the input non-silent sound frames,

we first perform acoustic feature extraction (i.e, MFCCs)

from each frame and identify the frames containing breathing

events. A detection calibration technique is then developed to

further improve the accuracy of breath detection by leveraging

the inherent breathing cycle correlation in a user’s acoustic

signal. Finally, our system further calculates the statistical

features from the sound signals of the identified breathing

frames. Based on both statistical features and MFCCs, we use

the random forest classifier to perform the exercise intensity

estimation.

In the meanwhile, our system also conducts a one-time

training process before the exercise intensity estimation. Dur-

ing the training process, each user needs to breath several

times under different exercise intensities in a relatively quiet

environment. The training sound captured by the headphone

is fed into the same acoustic data pre-processing component.

Similarly, both acoustic and statistical features are extracted

from the non-silent frames and they are used as the user’s

breathing profile and the exercise intensity profile. At run-

time, such profiles will then be utilized to train classifiers for

breathing sound detection and exercise intensity estimation,

respectively.

IV. EXERCISE INTENSITY ESTIMATION BASED ON

BREATHING SOUND

In this section, we present the detailed system implementa-

tion of our breathing sound based exercise intensity monitoring

system.

A. Acoustic Data Pre-processing

The basic idea underlying our monitoring system is based

on the observation that the characteristics of user’s breathing

sound are relatively stable under certain exercise intensity

and differ significantly between different exercise intensities.

However, most people usually do exercise in a relatively noisy

environment. The recording of breathing sound is susceptible

to background noises, such as music in the gym, traffic

noises or even the running footsteps. Furthermore, the inherent

thermal noise of recording devices also affects the breathing

sound recording. Both background and thermal noises could

significantly degrade the performance of our exercise intensity

monitoring system. In addition, due to the fact that the

breathing is intermittent, the acoustic signal usually contains

many silent segments. Thus, to build a robust system, we first

perform the acoustic data pre-processing to reduce the impact

of noises and then apply a non-silence detection method to

detect the "clean" breathing sound segments.

1) Noise Reduction: Noise reduction aims to clean the

recorded breathing sound by removing the noise components.

In our work, we adopt a bandpass filter to remove the sound

components with high or low frequency that are irrelevant to

breath events. Specifically, given the sampling frequency as

8 kHz, the recorded sound signal is segmented into multiple

frames with equivalent length M = 128. Then we apply the

bandpass filter with lower and upper cutoff frequencies, 100
Hz and 3400 Hz, to each frame for noise reduction. The lower

cutoff frequency of 100 Hz could filter the thermal noise at

lower frequency band, while the upper cutoff frequency of

3400 Hz ensures that most breathing-related sound compo-

nents are included [26].

2) Non-silence Detection: After noise reduction, our sys-

tem performs non-silence detection to detect "clean" breathing

segments. Assuming {r(l), 0 ≤ l ≤ N − 1} are N acoustic

samples and they have been equally divided into L frames,

each frame is represented as Fi = {r(l), (i − 1)M ≤ l <
iM − 1}, i = 1, ..., L with LM = N . Intuitively, the frames

containing sound have higher energy than other frames, so we

first attempt to identify the non-silence frames by calculating

the energy for each frame. Specifically, the signal energy Ei

of the frame Fi is derived as:

Ei =
1

M

iM−1∑
l=(i−1)M

|r(l)|2, i = 1, · · · , L. (1)

Next, a threshold-based method is developed to perform

non-silence detection based on the signal energy {Ei, i =
1, · · · , L} across different frames. If Ei is larger than a pre-

defined threshold Th, a non-silence frame Fi is identified.

However, it is challenging to determine an appropriate thresh-

old for non-silence detection as it may vary under different

noise profiles. Therefore, we develop a dynamic threshold

selection scheme based on the criteria introduced in [27].

Specifically, we first compute the histogram of the energy

sequence {Ei, i = 1, ..., L} and then apply a smoothing filter

to this histogram. If K1 and K2 are the positions of the first

and the second local maxima points in the histogram, the

threshold Th is given as:

Th =
αK1 +K2

α+ 1
(2)

where the α is a weight parameter defined by the user. In this

work, we empirically choose α = 5 for the best performance.

Example. Figure 3 shows an example of non-silence de-

tection based on a 20-second sound signal collected from a

specific exerciser. The breathing sound signal is depicted in

Figure 3(a), and the corresponding energy across different

frames is shown as the green line in Figure 3(b). The threshold

obtained from Equation 2 is also displayed as the black line

in this figure. The non-silence frames could be accurately

identified with the threshold, and represented in blue color in
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(a) Non-silence segments identification.
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(b) Energy sequence extraction.

Fig. 3. An example of non-silence detection.

Figure 3 (a). This encouraging result confirms the feasibility

of our approach to detect non-silence segments in the sound

signal.

B. Breathing Sound Detection

Non-silence segments cannot be directly used to infer

exercise intensity, so we need to extract representative breath-

related features from the sound signals, and then adopt a Gaus-

sian mixture model (GMM) as classifier to identify breathing

events. To further improve the accuracy of the breath detection,

we also propose a calibration technique by utilizing a square

wave generated by the most likely breathing rhythm to reduce

the number of incorrectly detected frames.

1) Acoustic Feature Extraction: The Mel-frequency cep-

stral coefficients (MFCCs), which are widely used in audio

signal processing, could capture the unique characteristics

of sound signal and are also insensitive to varying acoustic

profiles. Thus, it can be used to distinguish different sound

events (i.e., breathing or non-breathing events) embedded in

the sound signals. Specifically, we compute the MFCCs for

each frame Fi and take the first 12 coefficients as representa-

tive features (i.e., we have 12 features for each frame in total)

for breathing event detection.

2) Breathing Event Detection: To detect breathing event in

the non-silence frames, we first need to build the breathing

sound profile for each individual user due to the significant

differences of breathing pattern among different users in terms

of strength, frequency range and acoustic characteristics. It is

therefore necessary to design a training process to facilitate

breathing event detection for different users. Specifically, the

user is asked to record his breath sounds for several times

under different exercise intensities in a relatively quiet envi-

ronment. The quiet environment ensures a "clean" breathing

sound to be captured with as little noise as possible. In the

meanwhile, our non-silence detection scheme could identify

the frames with breathing sound automatically and save the

efforts for manually labeling breathing sound in the raw

acoustic signal. These detected breathing frames are then

used to construct the user’s breathing profile represented by

MFCCs.

Based on the breathing profiles of different users, we devel-

op a GMM-based classifier to detect breathing events. GMM is

a probabilistic classification model and assumes instances from

a dataset are generated by a mixture of Gaussian distributions

with different mean and variance [28]. To build a GMM

classifier with limited training data and avoiding overfitting,

we empirically set the number of Gaussian distributions in

GMM as 4. Specifically, two GMM models are built for

each user for the classifier training: The first model, denoted

as GMMb, is created based on MFCCs extracted from the

frames including user’s breathing sound; while the other model

GMMn is constructed using MFCCs extracted from the frames

with non-breathing sound.

During the breathing event detection phase, the MFCCs

extracted from a run-time acoustic frame Fi are fed into

GMMb and GMMn to obtain two different likelihood values:

pbi and pni. If Fi is non-silent and pbi > pni, the breathing

sound is detected and we label the frame Fi as Ri = 1 (i.e.,

breathing). Otherwise, the label is set as Ri = 0 (i.e., non-

breathing or silent), indicating the absence of breathing sound

in frame Fi. After all the non-silence frames are visited, the

detected breath sequence are given as: R = {Ri, i = 1, ..., L}.

3) Detection Result Calibration: Although the breath

events are roughly identified, it is still not applicable for ac-

curate exercise intensity estimation due to that environmental

noise still exists even after the noise reduction. Such noises,

which may have similar acoustic features as the breathing

sound, may cause a large number of "false positives" (i.e.,

non-breathing frames are incorrectly identified as breathing

frames) in the detected breath sequence. To improve the

detection accuracy, we take advantage of the high correlation

between consecutive breathing cycles to mitigate the impact

of background noise. This is due to the fact that breathing

interval is relatively uniform over a short period of time,

so breathing sound should also follow a cyclic pattern and

appear periodically. Specifically, our system first identifies the

breath period from the detected breath sequence R to generate

a square wave sequence, which is referred as the simulated

breath sequence. Our system then computes the correlation

between the detected breath sequence and the simulated breath

sequence under different parameter settings. The simulated

breath sequence with the highest correlation value could best

represent the user’s possible breathing rhythm and will be used

to reduce the number of incorrectly detected frames.

To generate the appropriate square wave, it is critical to

estimate the user’s breathing period first. Specifically, we

calculate the similarity between any two frame labels from

the detected breath sequence R = {Ri, i = 1, ..., L} as a

function of delay between them. Intuitively, the frame labels

in R should be highly similar to each other when such delay

is equal to the breathing cycle. Such delay could then be

utilized to identify the user’s breathing period. Specifically, we

assume the possible minimum and maximum interval between

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2021 at 19:51:18 UTC from IEEE Xplore.  Restrictions apply. 
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(a) Example of acoustic signal captured by the headphone.
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(b) Detection result calibration by utilizing the simulated breath sequence.
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(c) The simulated breath sequence (i.e., square wave) generation.

Fig. 4. Illustration of detection result calibration.

the human’s breathing cycles during exercise have Tmin and

Tmax frames, respectively. Given the range of adult’s normal

breathing rate during exercise, we can empirically determine

Tmin and Tmax as 75 and 375 frames, respectively. We then

define a function f(j) to measure the similarity as a function

of delay j between them:

f(j) =

L−Tmax−1∑
i=0

(Ri −Ri+j)
2

N − Tmax
, Tmin ≤ j < Tmax. (3)

A larger value of f(j) represents the similarity is lower and a

smaller value represents the similarity is higher. Thus, we use

the delay value τ that corresponds to the minimum value of

f(j) as the breathing period:

τ = arg min
j

f(j), s.t., Tmin ≤ j < Tmax. (4)

We next generate a simulated breath sequence which could

best represent the user’s possible breathing rhythm to perform

the detection result calibration. In particular, we generate a

square wave sequence with a period of τ and refer it as simu-

lated breath sequence. Our system then adjusts the duty cycle

and time lag of the simulated breath sequence, and calculates

the correlation between the simulated breath sequence and the

detected breath sequence (i.e., R = {Ri, i = 1, ..., L}). The

simulated breath sequence that gives the highest correlation

value could represent the user’s mostly likely breathing rhythm

and will be utilized for calibration.

Specifically, we let S = S(lag, dc) = {Si, i = 1, ..., L}
be a simulated breath sequence with a pre-determined period

τ , where lag and dc denote its time lag and duty cycle,

respectively. We then empirically set the search range of lag
and dc as [0.2, 0.6] and [0, τ ], respectively. The correlation

value is thus defined as:

c =
Corr{R,S(lag, dc)}

dc
, 0.2 ≤ dc ≤ 0.6, 0 ≤ lag ≤ τ. (5)

where the Corr{R,S(lag, dc)} denotes the cross correlation

between R and S. We next search for appropriate duty cycle dc
and time lag lag to maximize the correlation value c between

R and S. Finally, the corresponding dc and lag are chosen

as the duty cycle and the time lag for the simulated breath

sequence S.

In the calibration phase, we only keep the labels in the

detected breath sequence which correspond to "1" of the sim-

ulated breath sequence and set other labels as "0". Specifically,

for each Ri of R, the calibrated detection results are as

follows:

R′
i =

{
Ri if Si = 1

0 otherwise
(6)

where R′ = {R′
i, i = 1, ..., L}. If R′

i = 1 indicates Fi does

include the breathing sound we are interested, otherwise R′
i =

0.

Example. Figure 4 shows an example of detection result

calibration. In this example, we collect the breathing sound

from a user in a noisy environment and display it in Figure 4

(a). We then equally divide them into acoustic frames and

perform breathing event detection to obtain the detected breath

sequence as shown by both the blue and grey lines in Figure 4

(b). We can observe that environmental noises could cause

some "false positives" in breathing event detection.

To improve the detection accuracy, we extract the breathing

period τ and use it to generate a square wave, which is referred

as the simulated breath sequence. We then adjust its parameters

(i.e., duty cycle dc and time lag lag) and compute the corre-

lation value c between such simulated breath sequence and

the detected breath sequence. The simulated breath sequence

that gives the highest correlation value, which is shown in

Figure 4 (c), will be utilized for detection result calibration.

Specifically, as illustrated by the blue lines in Figure 4 (b),

only the detection labels which corresponds to "1" of the

simulated breath sequence will be kept and other labels will be

set as "0" (i.e., non-breathing) after the calibration. Thus, from

Figure 4 we can observe that most "false positives" caused

by environmental noise have been removed by our calibration

algorithm. This result is encouraging as it indicates that our

scheme is effective to identify breathing sound accurately even

under noisy environments.

C. Exercise Intensity Estimation

To estimate the exercise intensity, we further extract the

statistical features, which capture inherent characteristics of

breathing sounds (e.g., the energy or variance), from the

Authorized licensed use limited to: Rutgers University. Downloaded on October 01,2021 at 19:51:18 UTC from IEEE Xplore.  Restrictions apply. 



−200 −100 0 100 200
−200

−100

0

100

200

Dim1

D
im

2

Low Exercise Intensity
Medium Exercise Intensity
High Exercise Intensity

Fig. 5. An illustration of multidimensional scaling applied to features
collected from a user’s breathing sound under different exercise intensities.

frames that are identified as breathing events (i.e., the cor-

responding R′
i is detected as "1" ). In particular, for each

frame Fi, we derive 8 descriptive statistical features, including

min, max, range, mean, standard deviation, root mean square,

skewness and kurtosis. Based on such statistical features and

MFCCs obtained from previous breathing sound detection

component, we utilize the random forest [29] as classifier to

estimate the user’s exercise intensity (i.e., low, medium and

high). The random forest is chosen due to its high accuracy

and efficiency and it has been widely used for a large number

of classification problems [29].

Specifically, in our classification model, we first label the

training breathing frames corresponding to low, medium and

high exercise intensities as "L", "M" and "H", respectively.

We then select a subset of these frames to construct the

user’s exercise intensity profile, and train a random forest

classifier with 50 bagged decision trees. In the exercise

intensity estimation phase, the extracted statistical features

and MFCCs obtained from the run-time breathing frames

are fed into the random forest model and then the classifier

outputs a prediction label (i.e., "L", "M" or "H") for each

frame. To further improve the detection accuracy, we adopt a

plurality vote based criteria, which chooses the most frequently

occurring label among W consecutive breathing frames, to

determine user’s current exercise intensity. In this paper, we

empirically choose W = 50 frames (i.e., 0.8 seconds) to

achieve the best performance.

Feasibility Study. We next provide a feasibility study on

how features (i.e., statistical features and MFCCs) derived

for exercise intensity estimation change when they are ex-

tracted from acoustic frames which correspond to different

exercise intensities. However, these feature vectors consist of

20 features (i.e., 8 statistical features and 12 MFCCs) and it is

relatively difficult to visualize them in an intuitive way. To deal

with this problem, we normalize each feature and compute

features’ dissimilarity matrix using Manhattan distance. The

Multidimensional Scaling (MDS) [29] is then performed on

such dissimilarity matrix. The MDS is an effective technique

which could display the relative position of a number of

multiple-dimensional objects in a two-dimensional figure, only

given the distances among them. Intuitively, feature vectors
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Fig. 6. Illustration of 3 types of exercises.

which are similar are placed close to each other on the map,

whereas those vectors that are perceived to be very different

are separated far away from each other.

Specifically, we collect one set of acoustic frames under

each exercise intensity from a specific user with 50 frames

per set. We compute statistical features and MFCCs for each

frame, and then perform MDS on them. In particular, we

display 20-dimensional features in a 2-dimensional figure as

shown in Figure 5. In the example depicted in this figure,

the nodes depicted by blue circle, green square and red dia-

mond represent features extracted from low, medium and high

exercise intensities, respectively. We can observe that a clear

separation exists between features derived from different exer-

cise intensities. This demonstrates that our proposed acoustic

features can discriminate the user’s breathing sound collected

from different exercise intensities. These observations strongly

confirm the feasibility of using our proposed features for

exercise intensity estimation.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed

exercise intensity monitoring system with 9 subjects over a

period of four months. The following subsections detail our

experimental methodology and results.

A. Experimental Methodology

We use two smartphones (i.e., Huawei Honor 10 and

Huawei Mate 10) together with two Bluetooth headphones that

record sounds under 8 kHz sampling rate. Each smartphone

runs Android 9.0 operation system with 6 GB RAM and

a 2.4 GHz Kirin 970 processor. The acoustic readings are

collected and then written into a sound file on the smartphone

TABLE I
DEMOGRAPHICS OF VOLUNTEERS IN THE EXPERIMENT.

User ID Gender Age Category
1 Female 10-20 Regular
2 Male 20-30 Rare
3 Male 20-30 Occasional
4 Male 20-30 Occasional
5 Male 20-30 Rare
6 Male 20-30 Rare
7 Female 20-30 Rare
8 Male 20-30 Rare
9 Male 30-40 Regular
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Fig. 7. Exercise intensity estimation for running exercise under different environments: (a) Quiet gym. (b) Noisy gym with music on. (c) Noisy playground
with the traffic noise.
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Fig. 8. Exercise intensity estimation for different types of exercise.

during the users’ exercises. During the experiments, we let

users connect the Bluetooth headset to smartphones, and then

place the microphone of headphones near the user’s nose.

Such positions are quite natural since many users like to

wear headset in similar positions during exercises. To make

our system robust, users are also asked to adjust the position

of the microphone so that the distance between the user and

microphone is consistent during the experiment. We conduct

experiments using three popular cardio exercises (i.e., running,

cycling and elliptical workout as shown in Figure 6) under

three different environments: the quiet gym, the noisy gym
with the music on, the noisy playground with the traffic noise.

We conduct the experiments with 9 volunteers (ranging

from 19 to 35 years old) over 4 months to evaluate the

effectiveness of our system in exercise intensity monitoring.

The demographics of subjects are detailed in Table I. A size of

9 volunteers is also typical for exercise monitoring studies [7],

[24]. In addition, we also divide the subjects into 3 categories

according to their self-report information: Rare: volunteers

who rarely take any exercise; Occasional: volunteers who

occasionally take short exercise; Regular: volunteers who

usually take more than 60 minutes of exercise for each

week. To obtain the ground truth of the exercise intensity,

each volunteer is required to self-evaluate his/her exercise

intensity (i.e., low or high) using the Borg’s rating of perceived

exertion (RPE) [30] after each exercise. Another student also

accompanies with volunteers to record the exercise intensities

according to their feedbacks. We use a subjective measure

rather than an objective one (e.g., running speed) since the

exercise intensity is a subjective measure of how hard physical

activity feels to people and it may differ among people even

though they are doing the same exercise [9].

We use recall, precision and accuracy to evaluate the effec-

tiveness of our system for exercise intensity monitoring. They

are defined as follows:

Recall: the recall score for a certain exercise intensity is

defined as the ratio of the number of the correctly detected

instances associated with this exercise intensity to the total

number of instances associated with this exercise intensity.

The recall is thus the un-weighted mean of recall scores over

all exercise intensities.

Precision: the precision score for a certain exercise intensity

is defined as the ratio of the number of the correctly detected

instances associated with this exercise intensity to the total

number of instances which are detected as such exercise

intensity. The precision is thus the un-weighted mean of

precision scores over all exercise intensities.

Accuracy: the ratio of the number of the correctly detected

instances to the total number of instances.

B. Impact of Environmental Noise

In the first set of experiments, we evaluate the performance

of our proposed exercise intensity monitoring system for

running exercise in Figure 7 with different lengths of training

acoustic data under different environments (i.e., the quiet gym,

the noisy gym with the music on, the noisy playground with

the traffic noise). The legends "recall", "precision" and "accu-

racy" in Figure 7 denote the recall, precision and accuracy of

our system, respectively.

Figure 7 (a) to (c) present the recall, precision and accuracy

under different environments when the length of training

acoustic data varies. We observe that the overall value of
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recall, precision and accuracy remain more than 85 % across

all environments when the length of training data is longer than

30 seconds. This demonstrates that our system can achieve a

satisfactory performance with longer length of training data

even under noisy environments. In addition, it also indicates

that a training length of 30 seconds is sufficient for our scheme

to achieve a high accuracy of exercise intensity estimation.

Further, this figure also shows that better detection recall,

precision and accuracy can be achieved in the quiet environ-

ment, which indicates that the exercise intensities are more

likely to be misclassified under a noisy environments. This is

natural because it is relatively easier to identify the breathing

sound from the noise in a relatively quiet environments.

Finally, the figure clearly demonstrates that similar recall,

precision and accuracy are achieved in the noisy gym and the

noisy playground. This demonstrates that our system is also

robust to both indoor and outdoor environments.

C. Robustness to types of exercise

We next study the robustness of our system when the

run-time acoustic data is collected from different exercise.

Figure 8 (a) to (c) present the recall, precision and accuracy

under different lengths of training acoustic data when the run-

time measurements are collected from running, cycling and

elliptical workout respectively in a noisy gym with the music

on.

We observe that the overall recall, precision and accuracy

are higher than 80 % under different lengths of training data

across all types of exercise. This result is encouraging as

it indicates that our system is able to provide an accurate

and universal solution for exercise intensity monitoring under

various exercises. Further, we find that the recall, precision and

accuracy decrease when the user is exercising on the cycling

machine. This is because the noises generated by the exercise

bike is relatively higher than the elliptical machine and the

treadmill in our experiments, and such noise could degrade the

performance of our system on both breathing sound detection

and exercise intensity estimation.

Again, this figure also clearly shows that better performance

could be achieved when the length of training acoustic data

is longer than 30 seconds and it stabilizes when the training

length is longer than 45 seconds. This is due to the fact that

more breathing cycles which exist in the training data could

capture the user’s breathing characteristics more accurately.

We also find that a length of 30 seconds is enough for

our system to achieve a high accuracy of exercise intensity

monitoring.

D. Effectiveness of breathing sound detection

Finally, we evaluate the effectiveness of our proposed

breathing sound detection scheme. Specifically, we collect 3
acoustic recordings from each of 5 users with two-minute

length for each recording. To get the ground truth of the

breathing event, volunteers are required to listen to the acoustic

recording and manually label the breathing sound from the

raw data. We then use the breath cycle detection rate, which
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Fig. 9. Breath cycle detection rate under different environments.

is defined as the percentage of breath cycles that are accurately

identified to evaluate the effectiveness of our proposed breath

sound detection scheme.

Figure 9 (a) and (b) depict the detection rate derived from

3 exercises under different environments when the length of

training acoustic data changes. We observe that the overall

performance of our breathing sound detection scheme can

achieve over 85 % detection rate across all scenarios. This

indicates that our method is robust to different environmental

noises and exercises. Further, we can observe that the detection

rate increases when we conduct the experiments in a quiet

gym. This is consistent with our expectations: it would be

easier to identify the breathing sound accurately from the

background noise in a relatively quiet environment. In addi-

tion, we can find that the detection rate becomes relatively

lower for the elliptical workout. This is due to that the noise

generated by the elliptical machine is relatively higher in our

experiments and it can impact the performance of our proposed

breath sound detection scheme. Overall, these observations

indicate that our proposed breathing sound detection scheme

can identify breathing events accurately.

VI. CONCLUSION

In this paper, we propose a practical system which can mon-

itor an individual’s exercise intensity utilizing the off-the-shelf

smartphones. In particular, our system uses the smartphone’s

headphone to capture the user’s breathing sound and estimate

his/her exercise intensity. Our data pre-processing scheme

could remove the environmental noise and detect the non-silent

acoustic frames based on the signal energy. Our system then

performs breathing event detection and calibrates the detection

results by exploiting the high correlation between breathing

cycles to improve the detection accuracy. Furthermore, our

system estimates the person’s exercise intensity based on

features extracted from the frames which contain breathing

sound. Through extensive experiments involving 9 subjects

over four months time period, we show that our proposed

exercise intensity monitoring system is accurate and robust in

both indoor and outdoor environments. This strongly confirms

the feasibility of using the smartphone and its headphone for

exercise intensity monitoring.
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